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APPENDIX D

BASICBASIC ENGINEERINGENGINEERING CALCULATIONSCALCULATIONS

D-1 INTRODUCTION

This appendix consists of summaries of general areas of engineering that support topics presented in the main text or have general application
to field engineering practice. Many of the equations and functions discussed can be performed by preprogrammed hand-held calculators or
microcomputer-based software.

D-2 MATHEMATICS

The following paragraphs review some basic algebra, trigonometry, analytical geometry, and calculus operations. See Appendix C of theU.S.
Navy Ship Salvage Manual, Volume 1(S0300-A6-MAN-010) or Chapter 8 of theSalvor’s Handbook(S0300-A7-HBK-010) for mensuration
of plane shapes and solid bodies.

D-2.1 Quadratic Equations. Given a quadratic equationax2 + bx + c = 0, the following relationships exist for the rootsx1 andx2:

D-2.2 Cubic Equations. Cubic and higher order equations occur infrequently in most engineering problems, but usually are difficult to factor

x1, x2 = b ± b 2 4ac
2a

, x1 + x2 = b
a

, and x1(x2) = c
a

when they do occur. Trial and error solutions can define the general region in which a root occurs, but are generally too time consuming for
precise determination of roots. Graphical means can approximate roots with fair accuracy.

Numerical analysis techniques yield extremely accurate solutions. The more efficient numerical analysis techniques are too complicated to
present here. However, the bisection method described below is simple and usually can provide solutions with sufficient accuracy with only
a few iterations. To use the method, values of the independent variable above and below a root, designatedLo andRo, must be determined.
The function has a value of zero at a root, so ƒ(Lo) and ƒ(Ro) have opposite signs. Letn be the iteration number. Forn = 0, 1, 2, ... the
following steps are iterated until sufficient accuracy is attained:

a. Setm = 1/2 (Ln + Rn).

b. Calculate ƒ(m).

c. If ƒ(Ln)ƒ(m) ≤ 0, setLn+1 = Ln andRn+1 = m; if ƒ(Ln)ƒ(m) > 0, setLn+1 = m andRn+1 = Rn.

ƒ(x) has at least one root in the interval (Ln+1, Rn+1), with an estimated value of:

The maximum error is1⁄2(Rn+1 - Ln+1). The bisection method does not automatically find other roots that may exist on the real number line.

x ≈ 1
2

Ln 1 + Rn 1
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EXAMPLE D-1

Find the roots of ƒ(x) = x3 - 2x - 7

The first step is to find Lo and Ro. The approximate vicinity of the root can
be determined by calculating ƒ(x) for arbitrary values of x, as shown below:

x -2 -1 0 +1 +2 +3
ƒ(x) -11 -6 -7 -8 -3 +14

ƒ(x) changes sign between x = 2 and x = 3, so a root exists in the interval
(2, 3); set Lo = 2 and Ro = 3

Iteration 0:

m = 1
2

(2+3) = 2.5

f(2.5) = (2.5)3 - 2(2.5) - 7 = 3.625

ƒ(2.5) is positive, so a root exists in the interval (2, 2.5); set L1 = 2 and R1

= 2.5. At this point, the best estimate of the root is the value m that would
be used for the next iteration:

The maximum error is 1/2(2.5 - 2) = 0.25.

m1 ≈ 1
2

(2 2.5) = 2.25

Iteration 1:

ƒ(m) is negative so a root exists in the interval (2.25, 2.5); set L2 = 2.25 and

f(m1) = f(2.25) = 0.1094

R2 = 2.5. The best estimate of the root is:

The maximum error is 1/2(2.5 - 2.25) = 0.125. The procedure continues

x ≈ 1
2

(2.25 2.5) = 2.375

until the maximum error is acceptable.

D-2.3 Trigonometry. Trigonometry provides angular relationships that can be used to determine length of sides and size of included angles
in triangles and polygons, and to resolve vectors into rectilinear components.

D-2.3.1 Angular Measure

D-2.3.2 Right Triangles. For the right triangle shown in Figure D-1, sideh is the hypotenuse,

360 degrees = one complete circle = 2π radians

90 degrees = right angle =π
2

radians

one radian =180
π

= 57.3 degrees

one degree = π
180

= 0.0175 radians

Figure D-1. Right Triangle.

h
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θ

sidex is adjacent to, and sidey opposite of, angleθ. The Pythagorean Theorem states thatx2

+ y2 = h2, and forms the basis for the definitions of the trigonometric functions sine (sin), cosine
(cos), tangent (tan), cotangent (cot), secant (sec), and cosecant (csc) shown below:

sinθ = y
h

= 1
cscθ

cosθ = x
h

= 1
secθ

tanθ = y
x

= sinθ
cosθ

= 1
cotθ

cscθ = h
y

= 1
sinθ

secθ = h
x

= 1
cosθ

cotθ = x
y

= 1
tanθ

= cosθ
sinθ

Figure D-2 shows the relationship of the trigonometric functions to the unit circle. The func-

Figure D-2. Unit Circle.
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tions of the related angles are given in Table D-1. Table D-2 of theU.S. Navy Ship Salvage
Manual, Volume 1(S0300-A6-MAN-010) gives trigonometric functions for angles from 0 to
90 degrees.

Table D-1. Functions of Related Angles.

Function
Numerically equal function of theta for the indicated angle

-θ 90 - θ 90 + θ 180 - θ 180 + θ

sin -sinθ cosθ cosθ sinθ -sinθ
cos cosθ sinθ -sinθ -cosθ -cosθ
tan -tanθ cotθ -cotθ -tanθ tanθ

D-2D-2
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D-2.3.3 Trigonometric Identities

sin2θ + cos2θ = 1 cot2θ + 1 = csc2θ tan2θ + 1 = sec2θ

sin2θ = 2(sinθ)(cosθ) cos2θ = cos2θ sin2θ = 1 2sin2θ
sinθ = 2








sin







θ
2

cos







θ
2

= tanθ cosθ

sin







θ
2

= ± 1
2

(1 cosθ ) tanθ = sinθ secθ cosθ = cotθ sinθ

secθ = cscθ tanθ cotθ = cosθ cscθ
cscθ = secθ cotθ

D-2.3.4 Two-angle Formulae. For the two acute angles of a right triangle:

θ + φ = 90o

sin(θ + φ) = [sinθ][cosφ] + [cosθ][sinφ]

sin(θ - φ) = [sinθ][cosφ] - [cosθ][sinφ]

cos(θ + φ) = [cosθ][cosφ] - [sinθ][sinφ]

cos(θ - φ) = [cosθ][cosφ] + [sinθ][sinφ]

D-2.3.5 General Triangles. For any triangle, as shown in Figure D-3, the following laws

Figure D-3. General Triangle.

B

C

a

b
A

c
apply:

Law of Sines: sinA
a

= sinB
b

= sinC
c

Law of Cosines: a 2 = b 2 + c 2 2bc(cosA)

Area: 1
2

ab(sinC)

D-2.3.6 Hyperbolic Functions. Hyperbolic functions are specific equations that include the termsex ande-x. These combinations ofex and
e-x appear regularly in certain types of problems. In order to simplify the equations in which they appear, hyperbolic functions are given
trigonometric names and symbols:

sinhx = e x e x

2
coshx = e x + e x

2
tanhx = e x e x

e x + e x
= sinhx

coshx

cschx = 2

e x e x
= 1

sinhx
sechx = 2

e x + e x
= 1

coshx
cothx = e x + e x

e x e x
= coshx

sinhx

The hyperbolic identities differ somewhat from the standard trigonometric identities. Several of the most common identities are shown here:

cosh2x sinh2x = 1 1 coth2x = csch2x 1 tanh2x = sech2x

coshx + sinhx = e x coshx sinhx = e x

cosh(x + y) = (coshx) (coshy) + (sinhx) (sinhy) sinh(x + y) = (sinhx) (coshy) + (coshx) (sinhy)
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D-2.6.3 Integral Tables. It is not uncommon that an integral to be evaluated is not found in the integral table in use, especially with an
abbreviated table like the one above. When this occurs, there are three basic alternatives:

• Seek a more extensive integral table, such as those contained in theCRC Standard Mathematical Tables, Burrington’s Math Tables,
Mark’s Standard Handbook for Mechanical Engineers, or various calculus texts, such as Thomas’Calculus and Analytical
Geometry.

• Apply numerical or approximate methods (see Paragraph 1-4).

• Attempt to transform the integral into a form that can be evaluated. Some brief guidance on transforming integrals follows. For
a more complete discussion, consult a standard calculus text, such as Thomas’Calculus and Analytical Geometry.

Expressions to be integrated, orintegrands, are transformed by four basic methods:

• Trigonometric Substitutions– If an integrand contains√(a2-x2), substituteasinu for x. √(a2-x2) then becomesacosu.
Similarly, substituteatanu for x, andasecu for √(x2+a2), or asecu for x, andatanu for √(x2-a2)

• Completing the Square– Rewriteax2 + bx + c asa[x + b/2a]2 + (4ac - b2)/4a and substituteu = x + b/2a andB = (4ac -b2)/4a.

• Partial Fractions– For a ratio of polynomials, where the denominator has been factored into linear factorspi(x) and quadratic
factorsqj(x), and the degree of the numeratorr(x) is less than that of the denominator, rewriter(x)/[p1(x) . . . pn(x)q1(x) . . . qm(x)]
asA1/p1(x) + . . . + An/pn(x) + (B1x + C1)/q1(x) + . . . + (Bmx + Cm)/qm(x).

• Integration by Parts– Change the integral using the formula∫ u dv = uv - ∫ v du, whereu anddv are chosen so thatv is easy to
find from dv, andv du is easier to find thanu dv.

D-2.6.4 Uses of Integrals.The principal uses of integration are for determining areas and volumes of shapes bounded by continuous curves.

The area bounded byx = a, x = b, ƒ1(x) above, and ƒ2(x) below is given by:

The area of the surface created by rotating a functionf(x) about theX-axis is:

Area = ⌡
⌠ b

a
[ f1(x) f2(x)] dx

The volume of a function rotated about theX-axis is:

Surface area = 2π⌡
⌠ b

a
f(x) 1 + [ f (x)]2 dx

The volume of a function rotated about theY-axis is:

Volume = π⌡
⌠ b

a
( f (x))2dx

The length of a curve described by ƒ(x) is:

Volume = 2π⌡
⌠ b

a
x f(x)dx

Length = ⌡
⌠ b

a
1 + [ f (x)]2 dx
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D-2.7 Miscellaneous Constants

2 = 1.141421 π = 3.14159 e = 2.71828

3
2 = 1.25992 1

π
= 0.31830 1

e
= 0.36787

ln 2 = 0.69314 π2 = 9.86960 e2 = 7.38905

3 = 1.73205 ln π = 1.14472 log10 e = 0.43429

3
3 = 1.44224 log10 π = 0.49714 ln 10 = 2.30258

ln 3 = 1.09861

D-3 SOLID MECHANICS

Mechanics is the branch of science that deals with forces and motion. Statics deals with the action of forces on bodies at rest, while dynamics
deals with forces on bodies in motion.

D-3.1 Units of Mass and Force. Units of mass and force are often confused, particularly in the English gravitational (foot-pound-second)
system of units. Mass is a measure of physical quantity; the mass of an object is independent of gravity or other acceleration. Force is related
to mass by Newton’s second law of motion:

where m is the mass and v the velocity of the body in question, and d/dt indicates rate of change (derivative with respect to time) of the

F = d
dt

mv = m
dv
dt

v
dm
dt

designated property. Mass is constant for most situations, so dm/dt is zero, and change of velocity with respect to time is acceleration (a) giving
Newton’s second law in its familiar form:

In the English system, the pound is commonly used both as a unit of force (pound-force, lbf) and as a unit of mass (pound-mass, lbm). If these

F = ma

units are substituted into Newton’s second law, with acceleration in feet per second per second (ft/sec2), the units do not balance:

This discrepancy is resolved by multiplying the equation by a constant with appropriate units:

lbf = ( lbm)( ft/sec2)

One pound force is defined as the force exerted by a standard gravitational field on one pound mass. Standard acceleration due to gravity, go,

lbf = ( lbm)







ft

sec2
× C

lbf sec2

lbm ft

is taken as 32.174 ft/sec2. Substituting these values and units into the force equation and solving for C:

1 lbf = (1 lbm)(32.1739 ft/sec2) × C lbf sec2/lbm ft

∴ C lbf sec2/lbm ft = 1 lbf

32.174 lbm ft/sec2

D-7D-7
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The force equation can now be written:

wheregc is the gravitational acceleration constant, numerically equal to the standard acceleration due to gravity (32.174), with units of lbm-ft/lbf-

F = Cma = ma
gc

sec2. Theslug is defined as the mass that will be accelerated at 1 ft/sec2 by a force of 1 lbf. A slug is therefore equal to 32.174 lbm. If mass
is expressed in slugs,gc is 1 slug-ft/lbf-sec2.

In the International System of Units (SI), the unit of force is the newton (N), defined as the force required to accelerate a mass of kilogram at
one meter per second per second. Substitution into the force equation shows that with mass expressed in kilograms,gc is 1 kg-m/N-sec2. A
metric gravitational system, with force units of kilograms-force (kgf), is sometimes used, although it is gradually being displaced by the more
correct SInewton. Again, substitution of units into the force equation shows that to obtain forces in kilograms-force,gc must have a value of
9.80655 kg-m/kgf-sec2.

The constantgc is always present in the force equation, and consequently in many equations

Figure D-5. Resultants of Coplanar
Concurrent Forces.
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derived from it. Deletion ofgc or confusion ofgc with the acceleration of gravity (g) are
common errors in applying these equations. Depending on the units used, these errors may
have no practical consequence. The engineer should understand the function ofgc in the
relationships in use, and its numerical value relative to the desired units, to avoid serious
calculation errors.

D-3.2 Statics. Forces tend to change the state of rest or motion of a body. A force is
completely specified by its magnitude, direction, and point of application. The wordsense
as applied to a force refers to one of the two directions along the line of action of the force.
Forces are represented graphically by vectors with direction parallel to the forces line of
action and lengths proportional to the magnitude of the force. A drawing showing the lines
of action of forces acting on a body or structure is aspace diagram. A sketch showing
vectors representing the forces is avector diagram. In the following discussions, forces are
indicated on space diagrams by two lowercase letters next to their lines of action;
corresponding force vectors in the vector diagram are identified by the same uppercase letters
marking the endpoints. The sequence of letters identifying a vector indicates the sense of the
vector; vectorBA is equal to, but with opposite sense of vectorAB. A number of forces
taken collectively is a system or set of forces. Force systems are classified ascoplanar, with
the lines of action of all forces lying in the same plane, ornoncoplanar. Force systems are
further classified asconcurrent, nonconcurrent, or parallel, depending on whether all the

Figure D-6. Resolution of Forces.
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forces intersect at a single point, intersect at several points, or have parallel lines of action.
Two or more forces that are equivalent to a single force arecomponentsof the single force.
Composition of forcesis the replacing of a system of forces with a simpler system.
Resolution of forcesis the replacing of a single force by a system of forces, usually with
lines of action parallel to coordinate system axes. Theresultantof a force system is the
simplest equivalent system. For concurrent, coplanar forces, the resultant is a single force.
For nonconcurrent or parallel coplanar forces, the resultant may be either a force or a couple.
For noncoplanar forces, the resultant may be two or more forces that are not parallel and do
not intersect.

D-3.2.1 Coplanar Concurrent Forces. Two concurrent forces,P and Q, acting through
point O on a body, are represented by the adjacent sidesOB andOA of parallelogramOACB,
as shown in Figure D-5. The resultant is represented by the diagonalOC. Since sideBC is
equal to sideOA, the force system can also be represented by triangleOBC as shown. The
length of OC is determined by the law of sines or cosines, or the Pythagorean theorem if
OBC is a right triangle.

A force can be resolved into an infinite number of pairs of components by constructing
different triangles, as shown in Figure D-6. The most common task is to resolve the force
into rectangular components, parallel to the axes of the chosen coordinate system. The
unresolved force vector forms the hypotenuse of a right triangle, with the component forces
forming the adjacent and opposite legs as shown. Given angleα, Px = Pcosα and Py =
Psinα for the force triangle shown in Figure D-6.

D-8D-8
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The resultant of multiple concurrent forces can be found graphically by constructing a force

Figure D-7. Force Polygon.
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polygon, as shown in Figure D-7. The resultant can be determined algebraically by resolving
each force intox andy rectangular components, with components acting upwards or to the
right as positive, and those acting downwards or to the left as negative. Thex and y
components are summed separately, and the results recombined to form the resultant of the
force system.

D-3.2.2 Noncoplanar Concurrent Forces. The resultant of three rectangular noncoplanar
concurrent forcesP, Q, andSis determined by constructing a parallelopiped, as shown in Figure
D-8. The resultant is represented by the diagonalR, with magnitude√(P2+Q2+S2). Its
direction cosines with respect to the axes are given by:

The resultant of any number of noncoplanar, nonrectangular concurrent forces can be determined

cosα = P
R

, cosβ = Q
R

, cosγ = S
R

if the forces are specified with reference to three rectangular axes passing through the point of
currency. Each force is resolved intox, y, andz components that are summed and recombined
into the resultant. If the component summations are designatedΣFx, ΣFy, andΣFz, then:

R = Fx
2 + Fy

2 + Fz
2

φx = arccos
Fx

R
φy = arccos

Fy

R
φz = arccos

Fz

R

D-3.2.3 Moments and Couples.The moment, or torque, of a force about a point is the

Figure D-8. Resultant of Noncoplanar
Force System.
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product of the force magnitude and the moment arm (the distance separating the force line
of action and the point). When working with moments, it is important to adopt and maintain
a consistent sign convention.

Generally, moments tending to produce counter-clockwise rotation are taken as positive.

The moment of a force about a particular axis is determined by resolving the force into
components parallel with and perpendicular to the axis. The parallel component produces
no moment. The sum of the moments of any coplanar force system about any point or axis
in their plane is equal to the moment of the resultant about the same point or axis.

Two equal and parallel forces of opposite sense form acouple. The arm of the couple is the distance between the lines of action. The moment
of a couple is equal to the product of the magnitude of one of the forces and the arm of the couple; the moment is constant and independent
of the origin of the moments. Couples of equal moments, in the same or parallel planes, are equivalent, and may replace one another—a couple
may be rotated or moved in its own plane, or transferred to any parallel plane, without altering the resulting motion of the body on which it
acts. A couple may be represented by a vector length equal to the magnitude of the couple’s moment. The vector is drawn perpendicular to
the plane of the couple. The positive sense of the vector is the direction in which a right-hand screw would advance. The resultant of coplanar
couples, or couples in parallel planes, is a couple with moment and sense equal to the algebraic sum of the component couples. The resultant
of any number of couples in oblique or parallel planes is also a couple. The resultant is determined by resolving each couple vector into
components parallel to a set of rectangular axes. Thex, y, andz components are summed asΣCx, ΣCy, andΣCz; the magnitude and direction
angles of the resultant couple vectorC are given by:

C = Cx
2 + Cy

2 + Cz
2

φx = arccos
Cx

C
φy = arccos

Cy

C
φz = arccos

Cz

C
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D-3.2.4 Coplanar Nonconcurrent Forces.The resultant of a system of coplanar nonconcurrent forces may be either a single force or a couple.
Resultants are found graphically by use of afunicular diagram, a special type of vector diagram drawn next to the space diagram. For example,
to find the resultant of the four parallel forces shown in Figure D-9:

Figure D-9. Funicular Diagram.
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D
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150 lba. Plot vectorAB to show the sense and magnitude of forceab parallel to the line
of action at a convenient location. Then plot, in succession, the vectorsBC,
CD, andDE to show the sense and magnitude of forcesbc, cd, andde. The
vectors plot on the same line, in either an upward or downward direction, as
dictated by the sense of the vector force.AE, runningfrom the beginning to
the end of the vector diagram, shows the magnitude and sense of the resultant,
in this case, 180 pounds, downward.

b. To determine the line of actionae of vectorAE, plot the poleO in any con-
venient position and draw the raysAO, BO, CO, DO, andEO as shown.

c. From any point on the line of actionab (in the space diagram), draw strings
ao andob parallel toAO andOB.

d. From the intersection ofob andbc, draw oc parallel toOC until it intersects
cd; from the intersection, drawod parallel toOD to intersectde, then drawoe
parallel toOE to intersectoa at K. The line of actionaepasses throughK, 5.3
feet to the right ofab.

To solve the problem algebraically, a sign convention is adopted (upward forces positive,
downward forces negative) and the magnitude and sense of the resultant is given by the sum
of the forces (R = ΣF). The line of action of the resultant is determined by summing
moments. All moment arms are measured from the same point, selected to simplify
calculations, and the sum of the moments divided by the resultant force gives the resultant
moment arm, locating the line of action of the resultant, whereresultant arm= ΣM/R.

If the summation of forces is zero, but the sum of moments is not zero, the resultant is a
couple.

D-3.2.5 Noncoplanar Nonconcurrent Forces.The resultant of a system of noncoplanar parallel forces may be either a single force or a couple.
A set of three rectangular axes is established, with theZ-axis parallel to the lines of action of the forces. The intersection of the lines of action
of the forces with thex-y plane is indicated byx, y coordinates. Moment arms about theX and Y axes are readily determined from the
coordinates for each force. As with coplanar force systems, the magnitude and sense of the resultant are given by the summation of forces
(R = ΣF). The coordinates of the line of action of the resultant are found by dividing the sums of the moments about theX andY axes by the
resultant:

If ΣF = 0, butΣMx ≠ 0 or ΣMy ≠ 0, the resultant is a couple in a plane parallel to theZ-axis. The moment of the couple, and its orientation

xR =
My

R
=

(Fnxn)

F
, yR =

Mx

R
=

(Fnyn)

F

with the x-z plane, is determined by omitting one of the forces from the force and moment summations, as shown in the following example.
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EXAMPLE D-3

The lines of action of the four forces shown in the vector diagram in Figure D-10 are perpendicular

Figure D-10. Noncoplaner, Nonconcurrent
Forces.

(-1, 2) (2, 2)
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25 lb
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40 lbA

(R
=

25
lb

) (-1, -1)

35 lb

ARM
OF COUPLE

to the plane of the paper. Positive and negative senses are as shown. Summing forces and
moments:

Force
lbs

x
ft

My
ft-lb

y
ft

Mx
ft-lb

+ 20 - 1 - 20 + 2 + 40

+ 40 - 1 - 40 - 1 - 40

- 35 + 1 - 35 + 1 - 35

- 25 + 2 - 50 + 2 - 50

Sums 0 - 145 - 85

ΣF = 0, and ΣMx, ΣMy ≠ 0; the resultant is a couple. If the last force is omitted, Ro = +25 lb, ΣMy
= -95 ft-lb, and ΣMx = -35 ft-lb. The coordinates of the line of action of Ro are:

xo =
My

R
= 95

+25
= 3.8 ft , yo =

Mx

R
= 35

+25
= 1.4 ft

The arm of the couple is the distance AB, from the resultant force to the most distant opposite force. AB is determined to be 6.72 feet from triangle ABC.
The moment of the resultant couple is 25(6.72) = 168 ft-lb. The angle BAC is the angle between the plane of the couple and x-z plane. Angle BAC = arctan
3.4/5.8 = 30.38 degrees. The sense of the couple is seen to be counter-clockwise when viewed from the positive end of the Y-axis.

The resultant of a system of noncoplanar, nonconcurrent, non-
Table D-2. Conditions of Equilibrium.

System Algebraic Conditions Graphical
Conditions

Coplanar

Colinear ΣF = 0. Force polygon
closes.

Concurrent at point O

ΣFx = 0, ΣFy = 0, if the angle between x and y is not
180 degrees; or

ΣFx = 0, ΣMa = 0, if the x direction is not
perpendicular to Oa; or

ΣMa = 0, ΣMb = 0, if aOb is not a straight line.

Force polygon
closes.

Parallel

ΣF = 0, ΣM = 0; or

ΣMa = 0, ΣMb = 0, if line ab is not parallel to the
forces.

Force polygon
closes, funicular
polygon closes
(first and last
strings coincide).

Nonparallel,
nonconcurrent

ΣFx = 0, ΣFy = 0, ΣM = 0; or

ΣFx = 0, ΣMa = 0, ΣMb = 0, if x is not perpendicular to
ab; or

ΣMa = 0, ΣMb = 0, ΣMc = 0, if abc is not a straight
line.

Force and
funicular polygons
close.

Noncoplanar

Concurrent at point O
ΣFx = 0, ΣFy = 0, ΣFz = 0; or

ΣFs in every direction and ΣMn about every axis = 0.

Force polygon
closes. Polygon
is warped, so
both plan and
elevation views
must close.

Parallel ΣFz = 0, ΣMx = 0, ΣMy = 0, forces parallel to Z-axis. Not used.

Nonparallel,
nonconcurrent

ΣFx = 0, ΣFy = 0, ΣFz = 0, ΣMx = 0, ΣMy = 0, ΣMz = 0.
ΣM about every axis = 0.

The projection of
the system on
any plane is in
equilibrium.

parallel forces is generally a single force and a couple not co-
planar with the force. The magnitude, sense, and angular di-
rection of the force is the same as if the forces were concurrent:

R acts through the selected reference origin. The couple is

R = Fx
2 + Fy

2 + Fz
2

φx = arccos
Fx

R
φy = arccos

Fy

R
φz = arccos

Fz

R

determined by summing moments about the coordinate system
axes. The moment sums represent three couples which are axial
components of the resultant couple. IfΣMx is taken as a vector
along theX-axis,ΣMy as a vector along theY-axis, andΣMz a-
long theZ-axis, then the moment of the resultant couple and the
direction angles of its vector are given by:

R andC can be compounded into two nonintersecting forces.

C = Mx
2 + My

2 + Mz
2

θx = arccos
Mx

C
θy = arccos

My

C
θz = arccos

Mz

C

D-3.3 Conditions of Equilibrium. A body is in equilibrium
with respect to some reference system if it does not move with
respect to the reference (staticequilibrium), or moves with con-
stant velocity (dynamicequilibrium). For an object to be in
equilibrium, the resultant of all external forces and moments
must be zero.

Depending on the kind of force system involved, different tests or conditions are applied toprovethat the system is in equilibrium. In most cases,
a body is determined to be in equilibrium by inspection, and the applicable conditions of equilibrium are used to develop relationships that can
be solved for unknown forces, moments, distances, or angles. Conditions of equilibrium for various force systems are shown in Table D-2.
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If three forces are in equilibrium, they must be coplanar, and either concurrent or parallel. If concurrent, each force is proportional to the sine
of the angle between the other two forces. If parallel, each force is proportional to the distance between the other two.

If a force system is in equilibrium, the resultant of any part must balance the resultant of the other part. This fact is the basis for the construction
of free-body diagrams. A free-body diagram shows an object in equilibrium, with all external forces, moments, and support reactions. With
the object in equilibrium, the resultant of all forces and moments on the free body is zero. If any part of the object is removed and replaced
by the forces and moments exerted by the "cut" surface, a free-body diagram of the remaining structure is obtained, and the conditions of
equilibrium are satisfied by the new free body. By dividing an object into a sufficient number of free bodies, internal forces and moments can
be determined at all points of interest, provided the conditions of equilibrium are sufficient to give a static solution.

D-3.4 Centroids and Centers of Gravity. Thecentroidof a system of parallel forces with fixed application points is the point through which
their resultant always passes, no matter how the lines of action of the forces may be rotated, so long as they remain parallel. For plane surfaces,
the centroid corresponds to the center of area, so long as the forces are not affected by geometry; for volumes the centroid is the center of
volume. Determination of centers of areas and volumes by numerical integration is discussed in Paragraph 1-4. Relationships for locating the
centroids of various plane shapes are given in Appendix C of theU.S. Navy Ship Salvage Manual, Volume 1,S0300-A6-MAN-010.

The force of gravity acting on individual particles of a body constitutes a system of very nearly parallel forces; the centroid of these forces is
the center of gravityof the body. Calculation of center of gravity is discussed in Paragraph 1-3.7.

D-3.5 Moment of Inertia. Moment of inertia is a measure of the resistance of a solid or plane area to rotation about axes in the plane of the
area considered, and is always positive. The moment of inertia of a solid body, sometimes called themass moment of inertia(Im) with respect
to a given axis is the sum of the products of the masses of each elemental mass of which the body is composed and the square of the distance
of each element from the axis. Ifdm is an elemental mass, andy its distance from a reference axis, the moment of inertia of the body about
the axis isIm = ∫ y2 dm. Im is measured in units of mass and length squared, such as slug-ft2. Moment of inertia can also be expressed asIm

= k2m, wherem is the mass of the body andk is the radius of gyration or radius of inertia. The radius of gyration is the distance from the axis
to a point at which the mass of the body could be concentrated without changing the moment of inertia.k is measured in units of length, and
lies between the greatest and lowest values ofy. If a body is composed of a number of parts, its moment of inertia about an axis is equal to
the sum of the moments of inertia of the individual parts about the same axis.

The moment of inertia (I) of a plane surface with respect to a given axis is the sum of the products of the incremental areas of which the surface
is composed and the square of the distance of the incremental areas from the axis. IfdA is an incremental area, andy its distance from a
reference axis, the moment of inertia of the surface about the axis isI = ∫ y2 dA = k2A, whereA is the total area, andk is the radius of gyration.
The quantity∫ y2 dA is more properly referred to as thesecond moment of area, as it has units of length to the fourth power and is not truly
a measure ofinertia. For homogeneous solids of uniform thickness, the mass moment of inertia is equal to the moment of inertia of the face
of the solid, multiplied by the mass per unit volume and thickness of the solid. Moments of inertia for structural shapes are tabulated in
Appendix E. Calculation of moment of inertia for ship sections is discussed in Paragraph 1-11. Relationships for moments of inertia of various
plane shapes are given in Appendix C of theU.S. Navy Ship Salvage Manual, Volume 1(S0300-A6-MAN-010).

D-3.5.1 Parallel Axis Theorem. The moment of inertia of an area or mass is equal to the moment of inertia about a parallel axis through the
center of gravity, plus the product of the area or mass, and the square of the distance between the two axes:

where:

IAA = Io + Ad2 , Im,AA = Im,o + md2

IAA = moment of inertia (second moment) of area about some axisAA
Io = moment of inertia (second moment) of area about an axis parallel toAA through the center of area (centroid)
A = total area
d = perpendicular distance from the center of area or gravity to axisAA
Im,AA = moment of inertia of mass about some axisAA
Im,o = moment of inertia of mass about an axis parallel toAA through the center of gravity (not necessarily the center of volume)
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D-3.5.2 Polar Moment of Inertia. The polar moment of inertia is taken about an axis perpendicular to the plane of the area and is a measure
of the area’s resistance to twisting in its own plane of the area. The polar moment of inertia (Ip or J) is equal to the sum of the moments of
inertia about any two mutually perpendicular axes in the plane of the area that pass through the center of area:

J = Ip = IXX + IYY

D-3.5.3 Product of Inertia. The product of inertia (Ixy), sometimes called thecross moment

Figure D-11. Product of Inertia and
Parallel Axes.

Y

Y
X X

YO

XO XO

YO

ba

of inertia, is equal to∫∫ xy dy dx, wherex andy are the coordinates of incremental areas.Ixy

may be positive or negative, depending on the location of the area with respect to the
reference axesXX andYY.

If IXY,O is the product of inertia of areaA about the mutually perpendicular axesXoXo, YoYo

through the center of area as shown in Figure D-13, and axesXX, YYare parallel toXoXo,
YoYo, then:

IXY = IXY0
+ abA

whereIxy is the product of inertia of areaA about axesXX andYYanda andb are shown in Figure D-11.

D-3.5.4 Moments of Inertia About Inclined Axes. If Ix andIy are moments of inertia about a set of mutually perpendicular axesXX andYY,
andX′X′, Y′Y′ are a set of mutually perpendicular axes inclined at some angleθ to XX andYY, then:

Iy = Iycos2θ + Ixsin2θ + Ixysin2θ

Ix = Ixcos2θ + Ixsin2θ + Ixysin2θ

Ixy =
Ix Iy

2
sin2θ + Ixycos2θ

where:

Iy′ = moment of inertia about axisY′Y′
Ix′ = moment of inertia about axisX′X′
Ixy′ = product of inertia about axesX′X′, Y′Y′

D-3.5.5 Principal Moments of Inertia. For any plane area, there is a set of mutually perpendicular axes such that the moment of inertia is
maximum about one axis and minimum about the other. These axes are theprincipal axes of inertia, and the corresponding moments of inertia
are theprincipal moments of inertia. The product of inertia about the principal axes of inertia is zero. Axes of symmetry are always principal
axes of inertia.
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D-4 PHYSICAL AND MECHANICA L PROPERTIES OF MATTER

D-4.1 Density. Density (ρ) is the mass of a unit volume. Typical units are slugs per cubic foot, kilograms per cubic meter, grams per cubic
centimeter, and pounds-mass per cubic foot. Many fluid flow calculations are based on density measured in pounds-mass per cubic foot.

Weight density, or specific weight, is given by:

In a standard gravitational field (g = 32.174 ft/sec2), weight density in pounds-force and mass density in pounds-mass are numerically equal.

γ = ρg
gc

Density of a liquid or solid is usually given, obtained from a table, or easily determined by weighing asample of known volume. The density
of a gas can be found from a modification of the ideal gas law:

where:

ρgas = p
RT

ρgas = gas density, lbm/ft3

p = pressure, lbf/ft 2

R = specific gas constant, ft-lbf/lbm-oR
T = absolute temperature,oR

Tables E-19 and E-20 give densities of common solids and liquids. More extensive tables can be found in general engineering and technical
handbooks (see Bibliography).

D-4.1.1 Specific Volume. Specific volume (δ) is the volume occupied by a unit mass or weight, and is the reciprocal of density:

D-4.1.2 Specific Gravity . Specific gravity (γg), sometimes called relative density, is the ratio of a fluid’ s density to a specified reference

δ = 1
ρ

≈ 1
γ

density. For liquids and solids, the normal reference is the density of pure water. There is some confusion about this reference since the density
of water varies with temperature, and various reference temperatures have been used (e.g., 39, 60, 70 degrees Fahrenheit, etc.).

Strictly speaking, specific gravity cannot be given without specifying the reference temperature at which the water’s density was evaluated.
However, the reference temperature isoften omitted sincewater’s density is fairly constant over thenormal ambient temperature range. To three
significant digits, the reference density is 62.4 lbm/ft3, and:

Specific gravities of petroleum products and aqueous acid solutions are routinely expressed in "degrees" corresponding to hydrometer readings.

γg = ρ
62.4

The principal hydrometer scale in current use is the API (American Petroleum Institute) scale, although the Baumé scale was used widely in
the past. API gravities are converted to specific gravity (ratio) by:

Baumé hydrometer readings are converted to specific gravity by:

γg = 141.5
131.5 + °API

Appendix B of theU.S. Navy Ship SalvageManual, Volume5, (S0300-A6-MAN-050) includes tablesconverting API gravities to specific gravity

γg = 140.0
130.0 + °Baumé

for liquids less dense than water

γg = 145.0
145.0 °Baumé

for liquids denser than water

and density and temperature corrections for observed API gravities.
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The reference density for the specific gravity, or vapor density, of a gas is normally the density of air at specified conditions of pressure and
temperature. The most commonly used reference is air at standard temperature and pressure (STP), i.e. 70 degrees Fahrenheit and atmospheric
pressure. The density of air at STP is approximately 0.075 lbm/ft3, and:

If the gas and air densities are evaluated at the same temperature and pressure, the specific gravity is the inverse ratio of specific gas constants:

γgas ≈ ρ
0.075

D-4.2 Viscosity. The viscosity of a fluid is ameasure of its resistance to flow. Viscosity is illustrated by a model consisting of two plates

γgas ≈
Rair

Rgas

= 53.3
Rgas

that are separated by a viscous fluid layer with thickness (y). The bottom plate is fixed; the top plate is kept in motion at a constant velocity
(v) by a constant force (F).

Experiments with Newtonian fluids have shown that the force required to maintain the velocity is proportional to the velocity and inversely
proportional to the separation of the plates. That is,

The constant of proportionality, designated by the symbol µ, is known as the absolute or

F
A

∝ dv
dy

Table D-3. Viscosit y Units .

Syste m of
Units

Absolute
Viscosity

µ

Kinematic
Viscosity

ν

English
lbf-sec/ft2

slug/ft-sec
ft2/sec

Metric - CGS
dyne-sec/cm2

(poise)
cm2/sec
(stoke)

Metric - SI
Pascal-sec
N-sec/m2 m2/sec

dynamic viscosity. Noting that the quantity F/A is the fluid shear stress:

Kinematic viscosity is defined as:

τ = µ dv
dy

Viscosity is measured in a variety of units. Table D-3 lists the most commonly used units

ν =
µgc

ρ

in the English and SI systems.

Conversions between the two types of viscosities and between the English and various metric
systems are given in Table D-4.

Kinematic viscosity is measured indirectly by a viscometer,
Table D-4. Viscosit y Conversions.

To Obtain  Multiply  By and Divid e by

ft2/sec lbf-sec/ft2 32.174 density

ft2/sec stokes 1.076 × 10-3 1

lbf-sec/ft2 ft2/sec density 32.2

lbf-sec/ft2 poise 1 478.8

m2/s centistokes 1 × 10-6 1

m2/s stokes 1 × 10-6 1

m2/s ft2/sec 9.29 × 10-2 1

pascal-sec centipoise 1 × 10-3 1

pascal-sec lbm/ft-sec 1.488 1

pascal-sec lbf-sec/ft2 47.88 1

pascal-sec poise .1 1

pascal-sec slug/ft-sec 47.88 1

poise lbf-sec/ft2 478.8 1

poise stokes specific gravity 1

reyns lbf-sec/ft2 1 144

stokes ft2/sec 929 1

stokes poise 1 specific gravity

a container which allows the fluid to leak out through a small
orifice of precisedimensions. The moreviscous the fluid, the
more time wil l be required to leak out a given quantity.
Viscosity measured in this manner has the units of seconds.
The standard viscosimeters in the United States are the
Saybolt Universal viscosimeter for ordinary liquids, and the
Saybolt Furol viscosimeter for viscous liquids. The time
required for a gravity flow of 60 cubic centimeters through
the orifice is called Saybolt Seconds Universal (SSU) or
Saybolt Seconds Furol (SSF). Saybolt Universal
viscosimetersarecalibrated so that theviscosity of purewater
is 30 SSU. Approximate conversion of SSU and SSF to
stokes may be made by:

stokes = 0.00226SSU 1.95
SSU

(32 < SSU < 100)

= 0.00220SSU 1.35
SSU

(SSU > 100)

stokes = 0.0224SSF 1.84
SSF

(25 < SSF < 40)

= 0.0216SSF 0.60
SSF

(SSF > 40)
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In liquids, molecular cohesion is the dominating cause of viscosity. As the temperature of a liquid increases, these cohesive forces decrease
and absolute viscosity decreases.

In gases, the dominating cause of viscosity is random collisions between gas molecules. This molecular agitation increases with temperature,
causing the viscosity of gases to also increase with temperature.

The absolute viscosity of both gases and liquids is independent of pressure. Kinematic viscosity depends on both temperature and pressure
because these variables affect density.

D-4.3 Vapor Pressure. Molecular activity in a liquid tends to free some surface molecules that enter the atmosphere as vapor. This tendency
toward vaporization increases with temperature.Vapor pressureis the partial pressure exerted at the surface by the free molecules. Boiling
occurs when liquid vapor pressure exceeds the local ambient pressure.

D-4.4 Surface Tension. The skin which seems to form on the free
Table D-5. Typical Surface Tensions (68 oF, Air Contact).

Fluid T

Ethyl alcohol .001527 lbf/ft

Turpentine .001857

Water .004985

Mercury .03562

N-octane .00144

Acetone .00192

Benzene .00192

Carbon tetrachloride .00180

surface of a fluid is due to the intermolecular cohesive and adhesive
forces known as surface tension. Surface tension is the amount of work
required to form a new unit of surface area. The units are ft-lbf/ft2 or
lbf/ft.

Surface tension can be measured as the tension between two points on
the surface separated by a foot. It decreases as temperature increases
and depends on the gas contacting the free surface. Surface tension
values usually are quoted for air contact. Typical values are given in
Table D-5.

The relationship between surface tension and the pressure in a bubble
surrounded by gas is given by:

T = 1
4

r (pinside poutside)

wherer is the radius of the bubble. The surface tension in a full spherical droplet or in a bubble in a liquid is given by:

Surface tension is the cause ofcapillarity, which occurs whenever a liquid comes into contact with a vertical solid surface. In water, adhesive

T = 1
2

r (pinside poutside)

forces dominate. They cause water to attach itself readily to a vertical surface and climb the wall. In a thin-bore tube, water will rise above
the general level as it tries to wet the interior surface.

D-4.5 Compressibility. Compressibility is the percentage change in a unit volume per unit change in pressure:

Liquids are usually considered incompressible, but all fluids are somewhat compressible. The bulk modulus is the reciprocal of the

C =

∆V
V

∆p

compressibility:

E = 1
C

The bulk modulus of an ideal gas is given by:

E = kp

wherep is absolute pressure andk is the ratio of specific heats;k is 1.4 for air.
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D-5 FLUI D MECHANICS

Fluids are generally divided into two categories: ideal and real. Ideal fluids have zero viscosity and shearing forces, are incompressible, and
have uniform velocity distributions when flowing.

Real fluids are divided into Newtonian and non-Newtonian fluids. Both Newtonian and non-Newtonian fluids have finite viscosities and
nonuniform velocity distributions when flowing. Viscosities of Newtonian fluids are independent of the rate of change of shear stress, while
viscosities of non-Newtonian fluids vary with the rate of change of shear stress. Newtonian fluids are typified by gases, thin liquids, and most
fluids having simple chemical formulas. Non-Newtonian fluids are typified by gels, emulsions, and suspensions.

Most fluid problems assume Newtonian fluid characteristics.

D-5.1 Fluid Statics. Pressures are measured as standard or absolute. Absolute pressures are measured from a reference datum of zero absolute
pressure; thereareno negativepressures. Gagepressuresaremeasured from standard atmospheric pressure (approximately 14.7 psia). Negative
gage pressures (below atmospheric pressure) are called vacuum. Maximum vacuum is therefore -14.7 psig.

D-5.1.1 Manometers. Manometers measure pressure differentials. Figure D-12 shows a

Figur e D-12. Simpl e Manomete r.

P1

A

B C

h

P2

simple U-tube manometer whose ends are connected to two pressure vessels. If one end is
open to theatmosphere, themanometer measures thedifferencebetween pressureat theother
end and atmospheric pressure, i.e., gage pressure. Since the pressure at point B is the same
as at point C, the height (h) of the fluid column is related to the pressure differential (∆p):

∆p = p2 - p1 = γmh

where γm is the weight density of the manometer fluid. This relationship assumes that the
manometer is small and that only low-density gases fil l the tubes above the measuring fluid.
If a high-density fluid (such as water) is present above the measuring fluid, or if the gas
columns h1 or h2 are very long, a correction is required:

∆p = γmh + γ1h1 - γ2h2

where γ1 is the density of the fluid above the high end of the measuring fluid and γ2 is the
density of the fluid above the low end of the manometer fluid; h1 and h2 are the heights of
the fluid columns above the measuring fluid, as shown in Figure D-13. Corrections for
capillarity are seldom needed, since manometer tubes generally are large enough to preclude

Figur e D-13. Manomete r wit h Fluids
Over Measurin g Fluid.

P1

h

γ 1

γ 2

γ m

h2

h1

P2

capillary action.

D-5.1.2 Hydrostatic Pressure From Incompressible Fluids. Hydrostatic pressure is the
pressure which a fluid exerts on an object or container walls. Its line of action is normal to
the exposed surface, regardless of the object’s orientation or shape. It varies linearly with
depth and is a function of depth and density only. Pressure acting on an incremental area
creates an incremental pressure force; the resultant of all the incremental forces, or net
hydrostatic force, is afunction of pressure and area distribution and acts through the center
of pressure.

Pressure on a horizontal surface uniform and constitutes a system of parallel forces; the
center of pressure is the centroid of the plane surface. The gage pressure and total vertical
force are given by:

where:

p = γh, F = pA

p = hydrostatic pressure, lb/ft2

γ = fluid (weight) density, lb/ft3

h = depth of fluid of the surface, ft
F = hydrostatic force, lbf
A = area of the plane surface, ft2
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For a rectangular plate immersed in a fluid body, either vertically or inclined at some angle

Figur e D-14. Immerse d Rectangula r Plate.

S2sin θ

R
S1

SR

S2

θθ, as shown in Figure D-14, pressure varies linearly with depth. The pressures at the top and
bottom of the plate are:

p1 = γh1 = γs1sinθ

p2 = γh2 = γs2sinθ

where subscripts 1 and 2 denote the top and bottom of the plate, respectively, and s is the
distance from the intersection of the liquid surface and the extension of the plate surface to
the point in question, measured parallel to the plate surface. The average pressure occurs at
the average depth (1/2)(h1 + h2) sin θ and is equal to:

pavg = 1
2

γ (h1 + h2) = 1
2

γ (s1 + s2)sinθ

The total resultant force on the inclined plane is the product of the average pressure and total area, F = pavgA. The center of pressure is not
located at the average depth but at the depth of the center of the triangular or trapezoidal pressure distribution:

For a nonrectangular plane surface, the average pressure depends on the location of the centroid of the surface (sc):

sR = 2
3











s1 + s2

s1s2

s1 + s2

hR = sRsinθ

The line of action of the resultant (hydrostatic force) is normal to the plane surface, at depth hR:

pavg = γscsinθ , F = pavgA

where Ic is the moment of inertia about an axis parallel to the surface through the area’s centroid.

sR = sc +
Ic

Asc

, hR = sRsinθ

D-5.1.3 Hydrostatic Pressure From Compressible Fluids. The expression p = γ h is a special case of the more general Fundamental Equation
of Fluid Statics:

As previously defined, h is depth within the fluid, and it is assumed that h2 is greater than h1. The minus sign indicates that pressure decreases

⌡
⌠2

1

dp
p

= (h2 h1)

when height increases. If the fluid is a compressible layer of perfect gas, and if compression is assumed to be isothermal, the Equation of Fluid
Statics becomes:

The pressure at height h2 in a layer of isothermally compressed gas is:

h2 h1 = RT ln










p1

p2

p2 = p1 e
h1 h2

RT

EXAMPLE D-4

The pressure at sea level is 14.7 psia. Assume 70 oF isothermal compression, and calculate the pressure at 5,000 feet altitude.

R = 53.3 ft-lbf/lbm - oR for air. T = (70 + 460) = 530oR.

p5000ft = 14.7 e
0 5000

(53.3)(530) = 12.32 psia
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D-5.1.4 Fluid Masses Under Acceleration. The equations presented to this point have as-

Figur e D-15. Flui d Mass Under Constant
Linea r Acceleration.

ay

ax

φ

sumed that the fluid is subjected only to gravitational acceleration. When a fluid is subjected
to other accelerations, additional forces, which change hydrostatic pressures, are imposed.

If the fluid is subjected to constant accelerations in the vertical and/or horizontal directions,
fluid behavior is given by:

where ay is the vertical acceleration (negative if the acceleration is downward) and ax the hori-

ph = γh










1 +
ay

g
, θ = arctan











ax

ay + g

zontal acceleration. θ is the angle between the liquid surface and the horizontal, as shown in
Figure D-15. A plane of equal pressure also is inclined in a fluid mass under horizontal
acceleration.

D-5.2 Head. Pressure is measured in units of force per unit area (pounds per square inch, pounds per square foot, newtons per square meter,
etc.). Pressure is converted to the new variable head by dividing by the fluid density. Since density itself possesses dimensional units, the units
of head are not the same as the units of pressure:

(h, ft) = (p, lbf/ft 2)

(γ , lbf/ft 3)
≈ p, lbf/ft 2

ρlbm/ft3

As long as the fluid density and local gravitational acceleration remain constant, there is completenumerical interchangeability between pressure
and head. Head is used as ameasure of specific energy:

(h,ft) = (E, ft lbf)
(mass,lbm)

A certain amount of care in the use of these equations is required, because lbf is being canceled by lbm. The actual cancellation is:

h in ft =









gc,
lbm ft

lbf sec2








p, lbf

ft 2









g, ft

sec2








ρ , lbm

ft 3

As gc always equals 32.174, the correct numerical value for head wil l be returned as long as the local gravitational acceleration is 32.174 ft/sec2.

D-5.3 Reynolds Number. The Reynolds number is adimensionless ratio of the inertial flow forces to the viscous forces within the fluid:

where:

Re =
DeVρ
µgc

=
DeV

ν

De = equivalent flow diameter
V = flow velocity
ρ = fluid density
µ = absolute viscosity of the fluid
ν = kinematic viscosity of the fluid

The Reynolds number can be calculated from the unit mass flow rate (G):

where:

Re =
DeG

µgc

De = equivalent flow diameter, ft
V = flow velocity, ft/sec
G = mass flow rate per unit area, lbm/sec-ft2

µ = absolute viscosity of the fluid, lbf-sec/ft2

gc = gravitational constant = 32.174 lbm-ft/lbf-sec2
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The Reynolds number is an important indicator in many types of problems. In addition to being used quantitatively in many equations, the
Reynolds number also is used to determine whether fluid flow is laminar or turbulent. A Reynolds number of 2,000 or less indicates laminar
flow. Fluid particles in laminar flow move in straight paths parallel to the flow direction. Viscous effects are dominant, resulting in a parabolic
velocity distribution with a maximum velocity along the fluid flow centerline. If the Reynolds number is greater than 4,000, flow is turbulent.
Turbulent flow is characterized by random movement of fluid particles. For Reynolds numbers between 2,000 and 4,000, the flow regime is
in transition from laminar to turbulent flow.

D-5.4 Equivalent Diameter. For a circular flow channel, the equivalent diameter (De) in the expressions for Reynolds number is the inside
diameter. Equivalent diameters for other shaped channels are given in Table D-6.

Table D-6. Equivalen t Diameters.

Condui t Cros s Section De Condui t Cros s Section De

Flowin g Full Flowin g Partiall y Full

Annulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Do - Di Half-filled circle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D

Square . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L Rectangle (h deep, L wide) . . . . . . . . . . . . . . . . . . . .
4hL

L + 2h

Rectangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2L1 L2

L1 + L2

Wide, shallow stream (h deep) . . . . . . . . . . . . . . . . .
4h

Triangle (h deep, L broad, s side) . . . . . . . . . .
hL
s

Trapezoid (h deep, a wide at top, b wide
at bottom, s side) . . . . . . . . . . . . . . . . . . . . . . . . . .

2h(a + b)

b + 2s

D-5.5 Hydrauli c Radius. The hydraulic radius (rh) of a flow channel is the area in flow divided by the wetted perimeter, exclusive of the free
liquid surface. Equivalent diameter can be found from the hydraulic radius:

De = 4rh

D-6 STRENGTH OF MATERIALS

External forces acting on a body are resisted by reactions within the body, termed stresses.

F

Figur e D-16. Stresses.

F

F F

F = σbAb

F

F = σA

(a)
NORMAL
STRESS

(b)
SHEAR
STRESS

(c)
BEARING
STRESS

F

F

F

F = τAs

The maximum stress that can be sustained by a material is the measure of its strength, and
is determined by the elastic and cohesive properties of the material.

D-6.1 Stress. Stress is defined as force (F) per unit area (A) and thus has the same units
as pressure. Conditions causing the three fundamental typesof stress are illustrated in Figure
D-16. Normal or axial stresses (tensile and compressive) result from forces acting at right
angles to the cross section, and are indicated by the symbol σ, s, or f. The average normal
stress created by a force (F) acting on a cross section of area (A) is:

In most calculations, tensile stress taken as positive and compressive stress as negative.

σ = F
A

Shear stresses result from forces acting parallel to the cross section, and are indicated by the
symbol τ, st, or q:

where τ is the average shear stress in area As that is being sheared by force F. Bearing stress

τ = F
As

is actually a pressure, as it is the intensity of force between abody and its support. Bearing
stress is indicated by the symbol σb or sb, and, like normal and shear stress, is defined as a
ratio of force to area.

D-6.2 Strain. Strain (ε) is deformation expressed as apure number or ratio. For a member
in tension or compression, it is expressed as the change in length divided by original length.
True strain (δ) is the logarithm of the ratio of the length at the moment of observation to the
original length. True strain (δ) does not differ much from ε until above 20 percent. Elongation is accompanied by a reduction in cross-sectional
area. Poisson’s ratio (µ) is the ratio of strain measured at right angles to the applied stress to strain measured parallel to the applied
stress—essentially a statement of constancy of volume during deformation. For elastic strain, µ ranges from 0.283 to 0.292 for most structural
steels, and from 0.330 to 0.334 for most aluminum alloys. For plastic strain, µ is approximately 0.5.
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D-6.3 Stress-Strain Relationships.

Figure D-17. Stress-Strain Relationships.

(a) COMPARATIVE STRESS-STRAIN
DIAGRAMS. 1 SOFT BRASS; 2 LOW-
CARBON STEEL; 3 HARD BRONZE;
4 COLD-ROLLED STEEL; 5 MEDIUM
CARBON STEEL, ANNEALED 6 MEDIUM-
CARBON STEEL, HEAT-TREATED.

(b) TYPICAL STRESS-STRAIN CURVE FOR STEEL

(c) PROPORTIONAL LIMIT
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Stress-strain relationships differ slightly for
tensile and compressive stress.

D-6.3.1 Tensile Stress-Strain Diagram.
The commonly used engineering tensile
stress-strain curve is obtained by statically
loading a standard specimen; that is, by
loading the specimen slowly enough that all
parts of the specimen remain in static
equilibrium. Figure D-17(a) shows stress-
strain curves for several metals.

Stress-strain curves for most engineering
materials have an initial linearelastic
region, as shown in Figure D-17, where
deformation is reversible and time-
independent. The slope of this portion of
the curve, stress divided by unit elongation,
is the modulus of elasticity, or Young’s
modulus. In the elastic region, strain is
proportional to stress, and the material is
said to follow Hooke’s Law. The
proportional limit is the point where the
curve begins to deviate from a straight line,
i.e., the point where strain ceases to be
proportional to stress. Theelastic limit is
the maximum stress that a material will
withstand without permanent orplastic
deformation. If the specimen is loaded
further, the curve becomes increasingly less
linear. If a specimen is loaded to point X
in Figure D-17(c), and then unloaded, the
resulting unloading curve XX1 is linear and
essentially parallel to the original elastic
curve. The horizontal separation between
the bases of the two curves is the
permanent set or plastic strain
corresponding to the stress at X. The
elastic limit cannot be determined without
frequently unloading the specimen during
the test, but it is very near the proportional
limit; the proportional limit is customarily
taken as the elastic limit and called theproportional elastic limit(PEL). Shortly after the proportional limit, ferrous metals and certain other
materials exhibit a well-defined, "sharp-kneed"yield point—a stress where there is a marked increase in strain without an increase in stress as
shown in Figure D-17(b). The corresponding stress is called theyield stressor yield strength(σy). For materials without well-defined yield
points, and sometimes for those with yield points, an arbitrary yield strength is defined as the stress creating a specified permanent set, often
0.2 percent of original length.

Theultimate tensile strength(σu or UTS) is the maximum load sustained by the specimen (the highest point on the stress-strain curve) divided
by theoriginal cross-sectional area, and as such, is a conservative measure of the specimen’s strength. Thereduction in areaor necking down
is the contraction in cross section at the fracture, expressed as a percentage of the original area. Thefracture or rupture stress is the failure
load divided by the reduced area.

D-6.3.2 Compressive Stress-Strain Diagram.The compressive stress-strain curve is similar to the tensile curve up to the yield point.
Thereafter, increasing specimen cross section (rather than decreasing, as in the tensile test) causes the curve to diverge from the tensile curve.
Compressive yieldstrength is defined as the maximum compressive stress that a ductile material can withstand without a predefined amount
of deformation. Ultimate strength is the maximum compressive stress that a material can withstand without fracture. Some ductile materials
will not fail in a compression test. If a specimen is first plastically strained in tension, yield stress in compression is reduced and vice versa.

D-6.3.3 Relationship Between Strength and Loading.Materials that yield more than 5 percent before fracture are classed asductile.
Relatively definite relationships exist between the strength of ductile materials in tension and their strength in compression, shear, and bearing.
Compressive strength is approximately equal to tensile strength. Shear yield strength is normally taken as two-thirds tensile yield, although it
may be as low as one-half to five-eighths tensile yield. Bearing yield ranges from 0.9 to 1.5 times tensile yield, depending on the application.
Materials that yield less than 0.5 percent before fracture are classified as brittle. Brittle materials, such as concrete, cast iron, ceramics, polymers,
etc., are usually much stronger in compression than tension and fail by fracture rather than yield.

D-21D-21



S0300-A8-HBK-010

D-6.4 Hardness. Hardness is variously

Figure D-18. Steel Tensile Strength vs Hardness.
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defined as resistance to local penetration,
scratching, abrasion, or to yielding. The
resistance to local penetration, or
indentation hardness, is used widely as a
measure of hardness, and indirectly as an
indicator of other properties, including
strength. Indentation hardness is measured
on several scales by specialized equipment.

Brinell hardness is determined by forcing a
hardened sphere under known load into the
surface of the material, and measuring the
diameter of the resulting indentation. The
Brinell hardness number is the load used in
kilograms, divided by the surface area of
the indentation in square millimeters.

Rockwellhardness is indicated by the depth
of penetration of an indenter. The indenter
is either a steel ball of specified diameter or
a Brale—a spherical-tipped diamond cone
of 120 degree included angle and 0.2-
millimeter tip radius. A minor load of 10
kilograms is applied to initiate penetration
and hold the indenter in place. A 60-,
100-, or 150-kilogram major load is then
applied and released. Penetration is read
from an indicator dial with the minor load
still on the indenter. Hardness is expressed
as a number equal to a constant less the
number of gage units of penetration; harder
materials will have higher hardness
numbers. The dial on Rockwell hardness
indicators is arranged to read hardness
directly. A variety of combinations of
indenter and major load are possible; the
most commonly used areRockwell B(RB)
with a 1⁄16-inch steel ball indenter and 100-
kilogram major load, andRockwell C(RC)
with a Brale indenter and 150-kilogram
major load.

There is a more or less definite relationship between hardness and tensile strength for any material. Once the relationship has been determined
experimentally, the strength of a sample of the material can be estimated by the relatively simple Brinell or Rockwell tests. Figure D-18 shows
the relationship between tensile strength and hardness for steel; ultimate tensile strength is approximately 500 times the Brinnel hardness number.

D-6.5 Additional Definitions. The following terms are frequently encountered in discussions of material strength and structural applications:

Carbon steel. Carbon steel owes its properties chiefly to the presence of carbon, without substantial amounts of other alloying elements. It is
also termedordinary steel, straight carbon steel, andplain carbon steel.

Case hardening. A process of hardening a ferrous allow so that the surface layer, orcase, is made substantially harder than the interior orcore.
Typical case-hardening processes arecarburizingandquenching, cyaniding, carbonitriding, nitriding, induction hardening,andflame hardening.

Charpy Test. A pendulum type of impact test in which a specimen, supported at both ends as a simple beam, is broken by the impact of the
falling pendulum. The energy absorbed in breaking the specimen, as determined by the decreased rise of the pendulum, is a measure of the
impact strength, ortoughness, of the metal.

Cold work . Plastic deformation at such temperatures and rates that substantial increases occur in the strength and hardness of the metal. Visible
structural changes include changes in grain shape and, in some instances, mechanical twinning or banding.
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Cooling stresses. Stresses developed by uneven contraction or external constraint of metal during cooling; also those stresses resulting from
localized plastic deformation during cooling.

Corrosion fatigue. The repeated cyclic stressing of a metal in a corrosive medium, resulting in more rapid deterioration of properties than would
be encountered as a result of either cyclic stressing or of corrosion alone.

Creep. The flow or plastic deformation of metals held for long periods of time at stresses lower than the normal yield strength. The effect
is particularly important if the temperature of stressing is in the vicinity of the recrystallization temperature of the metal.

Creep limit . The maximum stress that will result in creep at a rate lower than an assigned rate.

Endurance limit . The maximum stress that a metal will withstand without failure during a specified large number of cycles of stress. If the
term is employed without qualification, the cycles of stress are usually such as to produce complete reversal of flexural stress.

Endurance ratio. The ratio of the endurance limit for cycles of reversed flexural stress to the tensile strength.

Fatigue. The tendency for a metal to break under conditions of repeated cyclic stressing considerably below the ultimate tensile strength.

Fatigue crack or failure. A fracture starting from a nucleus where there is an abnormal concentration of cyclic stress and propagating through
the metal. The surface is smooth and frequently shows concentric (sea shell) markings with a nucleus as a center.

Flow stress. The shear stress required to cause plastic deformation of metals.

Hot working . Plastic deformation of metal at such a temperature and rate that strain hardening does not occur. The lower temperature limit
for this process is the recrystallization temperature.

Impact Test. A test to determine the energy absorbed in fracturing a test bar at high velocity. The test may be in tension or in bending. A
notch test is made with a notched sample, to test resistance to multiaxial stresses and stress concentration effects.

Malleability . The ease with which a metal deforms when subjected to rolling or hammering.

Modulus of Rigidity . In a torsion test, the ratio of the unit shear stress to angular displacement per unit length in the elastic range. Modulus
of rigidity corresponds to the modulus of elasticity in the tension test.

Modulus of Rupture. The ultimate strength of the breaking load per unit area of a specimen tested in torsion or in bending (flexure). In
tension, modulus of rupture is the tensile strength.

Notch brittleness. Susceptibility of a material to brittleness in areas containing a groove, scratch, sharp fillet, or notch.

Notch fatigue factor. The reduction caused in fatigue strength by the presence of a sharp notch in the stressed test section.

Notch sensitivity. The reduction in nominal strength caused by the presence of a stress concentration, usually expressed as the ratio of the
notched to the unnotched strength.

Operating stress. The stress to which a structural unit is subjected during service.

Plasticity. The ability of a metal to be deformed extensively without rupture.

Proof load. The test load applied to anchors, chains, or other parts, fittings, or structure to demonstrate proper design and construction and
satisfactory material.

Proof strength. The strength of a material, part, or structure as established by a proof test.

Proof stress. In a test, stress that will cause a specified permanent deformation in a material, usually 0.01 percent or less.

Residual stress. Stresses set up within a metal by nonuniform plastic deformation. This deformation may be caused by cold working or by
drastic gradients of temperature from quenching or welding.

Resilience. The tendency of a material to return to its original shape after the removal of a stress that has produced elastic strain.

Shear Modulus. Modulus of rigidity.

Strain hardening. An increase in hardness and strength caused by plastic deformation at temperatures lower than the recrystallization range.

Tangent modulus. The slope of the stress-strain curve of a metal at any point along the curve in the plastic region. In the elastic region, the
tangent modulus is equivalent toYoung’s modulus.

Thermal stresses. Stresses in metal, resulting from nonuniform distribution of temperature.

Toughness. The ability of a material to absorb energy before fracture; usually represented by the area under a stress-strain curve, and therefore
a function of both ductility and strength.

Welding stress. The stress resulting from localized heating and cooling of metal during welding.

Work hardness. Hardness developed in metal as a result of cold working.
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D-6.6 Failure Modes and Safety Factors.If a structural member or part is to carry applied loads safely, a maximum permissible stress must
be determined. Thisallowable stress, also calledworking stress, design stress, safe stress, etc.,is used to establish minimum component
dimensions or maximum component loads. Allowable stress is found by dividing the applicable material property—yield strength, ultimate
strength, fatigue strength—by an appropriate factor of safety. The factor of safety should be chosen only after all other factors contributing to
or detracting from the reliability of the member have been quantified as thoroughly as possible. These factors include assumptions implicit in
the structural analysis and uncertainties as to the magnitude and kind of operating loads, reliability of the materials used, operating environment,
level of quality control that can be implemented during fabrication and installation, and level of knowledge about possible failure modes. An
additional important consideration is the potential damage should the component or system fail, particularly when there is danger to human life.

In general, the ductility of the material and type of loading specify the failure mode and the property to which the factor of safety should be
applied to determine allowable stress. There are three general cases:

• Brittle materials,

• Ductile materials in static loading, and

• Ductile materials in cyclic loading.

D-6.6.1 Brittle Materials. For brittle materials in uniaxial stress, the factor of safety (FS)

Figure D-19. Safe Stress Combinations for
Brittle Materials (Maximum
Normal Stress Theory).

Suc

Suc

Sut

Sut
-σ1

-σ2

+σ1

+σ2

SAFE?

SAFE ?

is applied to ultimate strength (σu) to determine allowable stress:

For brittle materials in biaxial stress, themaximum normal stress theorypredicts failure of

σallow =
σu

FS

brittle materials under static loading if the compressive principal stress is greater than the
ultimate compressive strength, or the tensile principle stress is greater than the ultimate
tensile strength. The principle stresses,σ1, σ2, are determined as described in Paragraph 2-
8.2. By plotting compressive stresses as negative and tensile stresses as positive onσ1-σ2

coordinates, asafe stress combination envelopecan be defined as a rectangle bounded by the
ultimate compressive and tensile principle stresses, as shown in Figure D-19. An allowable
stress envelope is created by applying a safety factor to the ultimate compressive and tensile
stresses to define a smaller rectangle.

Figure D-20. Safe Stress Combinations for
Brittle Materials (Coulomb-Mohr
Theory).
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Experimental evidence shows that failures occur in the second and fourth quadrants, even
though the stresses are less than the ultimate strengths. TheCoulomb-Mohr theorymodifies
the failure line in the second and fourth quadrants, shown in Figure D-20, along with typical
failure data.

D-6.6.2 Ductile Materials in Static Loading. Plastic deformation is unacceptable for most
applications, so yield is considered failure. Allowable stresses for ductile materials in
uniaxial stress are found by applying the factor of safety (FS) to ultimate tensile strength
(σu):

σallow =
σu

FS

Compressive and tensile yield strengths are equal for ductile materials.

For ductile materials in biaxial stress or pure shear, themaximum shear stress theorypredicts that yield will begin when maximum shear stress
equals the shear yield strength. Shear yield strength (τy) is 60 to 65 percent of tensile yield strength for ductile materials, but is assumed to
be one-half tensile yield strength by the theory. Maximum shear stress is equal to:

τmax =
σ1 σ2

2
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The basic criteria is to keep maximum shear stress below one-half the tensile yield strength,

Figure D-21. Safe Stress Combinations for
Ductile Materials (Maximum
Shear Stress Theory).
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producing the safe stress envelope shown in Figure D-21. The shape of the envelope is
similar to that of the Coulomb-Mohr theory for brittle materials, but is based on yield
strength rather than ultimate strength. The envelope is symmetrical because tensile and
compressive yield strength are assumed equal for ductile materials. The factor of safety is
defined as:

Allowable shear stress is then:

FS =
τallow

τmax

=
σy

2τmax

The factor of safety is incorporated into the allowable stress diagram by setting theσ1 and

τallow =
σy

2FS

σ2 intercepts equal toτallow.

D-6.6.3 Ductile Materials in Cyclic Loading. Fatigue failure is failure of a component

Figure D-22. Typical S-N Curve for Steel.
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subject to cyclic loading at stresses below the yield limit. The fatigue strength is the
maximum completely reversing stress a material can withstand without failing. A logarithmic
plot of fatigue strength against the number of load cycles (S-N curve, shown in Figure D-22)
shows a linear relationship in the region between 1,000 and 1,000,000 cycles. For fewer than
1,000 cycles, fatigue strength is equal to ultimate strength; after 1,000,000 cycles there is no
further strength reduction and the curve is flat. The maximum stress for an infinite life is
the endurance strength (se). Endurance strengths for steel and cast iron are:

Steel se = 0.5su (su < 200,000 psi)

= 100,000 psi (su > 200,000 psi)

Cast iron se = 0.4su

where:

su = ultimate strength for the type stress (i.e., tensile, compressive, shear)

Fatigue strength of aluminum never levels off, but continues to decrease as the number of cycles increase. Endurance strength for aluminum
is taken as the fatigue strength at 100,000,000 cycles and is approximately:

Cast se = 0.3su
Wrought se = 0.4su

An S-Ncurve can be used to establish limiting loads for an anticipated number of cycles, or to predict the approximate number of cycles to
failure for known stress levels.

Fluctuating stresses are created in a material when:

• A load is intermittently applied and released in one direction only.

• A component is subject to both a static load and a cyclic (reversing) load that is not great enough to cancel the static load and
reverse the stresses in the component.

• An applied load varies between upper and lower limits, but does not reverse.

The mean stress is:

The alternating stress is half the stress range:

Figure D-23. Safe Operating Stress Envelope
Determined by Soderberg Line.
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smean =
smax smin

2

Failure stress of a material under fluctuating stress is a function of both yield strength and

salt =
smax smin

2

endurance strength. The two criteria are related by plottingsalt on a vertical scale, andsmean
on a horizontal scale, as shown in Figure D-23. A failure line (Soderberg line) is drawn
from the endurance strength (se) on the vertical scale, and yield strength (sy) on the
horizontal. The enclosed triangle defines acceptable combinations of alternating and mean
stress. Factors of safety can be applied tose andsy to define a safe stress line, as shown.
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